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Abstract

Inferring the causal structure of a set of ran-
dom variables from a finite sample of the
joint distribution is an important problem
in science. Recently, methods using addi-
tive noise models have been suggested to ap-
proach the case of continuous variables. In
many situations, however, the variables of in-
terest are discrete or even have only finitely
many states. In this work we extend the no-
tion of additive noise models to these cases.
Whenever the joint distribution P(X,Y ) ad-
mits such a model in one direction, e.g. Y =
f(X) + N, N ⊥⊥ X, it does not admit the
reversed model X = g(Y ) + Ñ , Ñ ⊥⊥ Y as
long as the model is chosen in a generic way.
Based on these deliberations we propose an
efficient new algorithm that is able to dis-
tinguish between cause and effect for a finite
sample of discrete variables. We show that
this algorithm works both on synthetic and
real data sets.

1 Introduction

Inferring causal relations by analyzing statistical de-
pendences among observed random variables is a chal-
lenging task if no controlled randomized experiments
are available. So-called constraint-based approaches
to causal discovery (Pearl, 2000; Spirtes et al., 1993)
select among all directed acyclic graphs (DAGs) those
that satisfy the Markov condition and the faithfulness
assumption, i.e., those for which the observed inde-
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pendences are imposed by the structure rather than
being a result of specific choices of parameters of the
Bayesian network. These approaches are unable to
distinguish among causal DAGs that impose the same
independences. In particular, it is impossible to dis-
tinguish X → Y from Y → X.

More recently, several methods have been suggested
that use not only conditional independences, but also
more sophisticated properties of the joint distribution.
For simplicity, we explain the ideas for the two vari-
able setting, a particularly challenging case. Kano &
Shimizu (2003) and Shimizu et al. (2006) use models

Y = f(X) +N (1)

where f is a linear function and N is additive noise
that is independent of the hypothetical cause X. This
is an example for an additive noise model from X to Y .
Apart from trivial cases, P (X,Y ) can only admit such
a model from X to Y and from Y to X in the bivariate
Gaussian case, which leads to the following way of dis-
tinguishing between cause and effect: Whenever such
an additive noise model exists in one direction but not
in the other, we prefer the former based on Occam’s
Razor and infer it to be the causal direction. Janzing
& Steudel (2009) give further theoretical support for
this principle of causal inference using the concept of
Kolmogorov complexity and Peters et al. (2009a) use
this principle to detect whether a sample of a time
series has been reversed. Hoyer et al. (2009) general-
ize the method to non-linear functions f and Zhang
& Hyvarinen (2009) augment the model by applying
a non-linear function g to the rhs of eq. (1). They
still obtain identifiability for generic cases. All these
proposals, however, were only designed for real-valued
variables X and Y .

For discrete variables, Sun et al. (2008) propose a
method to measure the complexity of causal models
via a Hilbert space norm of the logarithm of condi-
tional densities and prefer models that induce smaller
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norms. Sun et al. (2006); Janzing et al. (2009b) fit
joint distributions of cause and effect with conditional
densities whose logarithm is a second order polynomial
(up to the log-partition function) and show that this
often makes causal directions identifiable when some
or all variables are discrete. For discrete variables,
several Bayesian approaches (Heckerman et al., 1999)
are also applicable, but the construction of good pri-
ors are challenging and often the latter are designed
such that Markov equivalent DAGs still remain indis-
tinguishable.

Here, we extend the additive noise model in eq. (1)
to the discrete case by assuming both X and Y take
values in Z (the support may be finite, though) and
adopt the causal inference method from above: If there
is an additive noise model from X to Y , but not vice
versa, we infer that X is causing Y . Note that we
can apply this principle even to the mixed case (one
continuous and one discrete variable) by distretizing
the continuous variable, assuming that this does not
destroy the model structure.

Our causal inference method is sensible only if there
are not many instances, for which there is an addi-
tive noise models in both directions. If all additive
noise models from X to Y also allow an additive noise
model from Y to X, for example, we could not draw
any causal conclusions at all. We show that reversible
cases are very rare and thereby answer this theoretical
question.

For a practical causal inference method we need to test
whether the data admits an additive noise model. In
principle we thus have to check all possible functions
and test whether they result in independent residuals.
This is highly intractable since the function space is
too large. In this work we propose an efficient heuristic
procedure that proved to work very well in practice.

In section 2 we repeat the concept of additive noise
models and show the corresponding identifiability re-
sults for generic cases in section 3. In section 4 we
introduce an efficient algorithm for causal inference on
finite data, for which we show experimental results in
section 5. We conclude in section 6.

2 Additive Noise Models for Discrete
Variables

For simplicity we introduce the following notation:
pX(x) = P(X = x), pY (y) = P(Y = y), n(l) =
P(N = l), ñ(k) = P(Ñ = k) and suppX is defined
as the set of all values that X takes with probability
larger than 0: suppX := {k | pX(k) > 0}.

Assume that X and Y take values in Z (their distri-

butions may have finite support). We say that there
is an additive noise model (ANM) from X to Y if

Y = f(X) +N , N ⊥⊥ X

where f : Z → Z is an arbitrary function and N a
noise variable that takes integers as values, too.

Furthermore we require n(0) ≥ n(j) for all j 6= 0.
This does not restrict the model class, but is due to
a freedom we have in choosing f and N : If Y =
f(X) + N, N ⊥⊥ X, then we can always construct a
new function fj , such that Y = fj(X) + Nj , Nj ⊥⊥ X
by choosing fj(i) = f(i) + j and nj(i) = n(i+ j).

Such an ANM is called reversible if there is also an
ANM (including a function g and some noise Ñ) from
Y to X, i.e. if it satisfies an ANM in both directions.

As it has been proposed for the continuous case we
apply the following causal principle throughout the re-
mainder of this article:

Causal Inference Principle (for discrete vari-
ables) Whenever Y satisfies an additive noise model
with respect to X and not vice versa we infer X to be
a cause for Y , and write X → Y .

3 Identifiability

Let A be the set of all possible joint distributions and
F its subset that allows an additive noise model from
X to Y in the “forward direction”, whereasB allows an
ANM in the backward direction from Y to X (see Fig-
ure 1). Some trivial examples like pX(0) = 1, n(0) = 1
and f(0) = 2 immediately show that there are joint
distributions allowing ANMs in both directions, mean-
ing F ∩ B 6= ∅. Our method, however, is only useful

F

B

A

Figure 1: How large is F ∩B?

if the intersection is not too large. We therefore iden-
tify F ∩B and show that it is indeed a very small set.
If we are unlucky and the data generating process we
consider happens to be in F ∩B, our method does not
give wrong results, but answers “I do not know the an-
swer”. In all other situations the method identifies the
correct direction given that we observe enough data.
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3.1 X or Y has finite support

First we assume that either the support of X or the
support of Y is finite. This already covers the situation
in most applications. Figure 2 (the dots indicate a
probability greater than 0) shows an example of a joint
distribution that allows an ANM from X to Y , but not
from Y to X. This can be seen easily at the “corners”
X = 1 and X = 5: Whatever we choose for g(0) and
g(4), the distribution of Ñ |Y = 0 is supported only
by one point, whereas Ñ |Y = 4 is supported by 3
points. Thus Ñ cannot be independent of Y .

Figure 3 shows a (rather non-generic) example that al-
lows an ANM in both directions if we choose pX(ai) =
1
36 , pX(bi) = 2

36 for i = 1, . . . , 4 and pX(ai) =
2
36 , pX(bi) = 4

36 for i = 5, . . . , 8.

The proofs of the following theorems are provided in
(Peters et al., 2009b).

Theorem 1 An additive noise model X → Y is
reversible ⇐⇒ there exists a disjoint decomposition⋃l

i=0 Ci = suppX, such that

• The Cis are shifted versions of each other

∀i ∃di ≥ 0 : Ci = C0 + di

and f is piecewise constant: f |Ci
≡ ci ∀i.

• The probability distributions on the Cis are shifted
and scaled versions of each other with the same
shift constant as above: For x ∈ Ci the following
equation holds

P(X = x) = P(X = x− di) ·
P(X ∈ Ci)
P(X ∈ C0)

.

• The sets ci + suppN := {ci + h : n(h) > 0} are
disjoint.

By symmetry such a decomposition must exist for
suppY , too. We are now given a full characteriza-
tion of all cases that allow an ANM in both directions.
Since already each condition by itself is very restric-
tive, all of them together describe a very small class of
models: in almost all cases the direction of the model
is identifiable. In Figure 3 all ai belong to C0, all bj to
C1 and d1 = 1. The main point of the general proof
is based on the asymmetric effects of the “corners” of
the joint distribution.

3.2 X and Y have infinite support

Theorem 2 Consider an additive noise model X →
Y where both X and Y have infinite support. We dis-
tinguish between two cases

X

Y

2 4 6

2

4

6

Figure 2: This joint distribution satisfies an additive
noise model only from X to Y .

X

Y

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8

c0

c1

Figure 3: Choosing the parameters carefully leads to
a reversible ANM.

1. N has compact support: ∃m, l ∈ Z, such
that suppN = [m, l]. Assume there is an ANM
from X to Y and f does not have infinitely many
infinite sets, on which it is constant. The model
is reversible ⇐⇒ there exists a disjoint decompo-
sition

⋃l
i=0 Ci = suppX that satisfies the same

conditions as in Theorem 1.

2. N has entire Z as support: P(N = k) >
0 ∀k ∈ Z. Suppose X and Y are not independent
and there is an ANM X → Y and Y → X. If f ,
the distribution of N and all pX(k) for all k ≥ m
for any m ∈ Z are known, then all other values
pX(k) for k < m are determined. That means
even only a small fraction of the parameters de-
termine the remaining parameters.

Note that the first case is again a complete characteri-
zation of all instances of a joint distribution, an ANM
in both directions is conform with. The second case
does not yield a complete characterization, but shows
how restricted we are in choosing a distribution PX

that yields a reversible ANM, for a given function f
and noise N .
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4 Practical Method for Causal
Inference

Based on our theoretical findings in section 3 we pro-
pose the following method for causal inference (see
Hoyer et al. (2009) for the continuous case):

(1) Given are iid data from (X,Y ).

(2) Regression of the model Y = f(X) + N leads to
residuals N̂ ,
regression of the model X = g(Y ) + Ñ leads to

residuals ˆ̃N .

(3) If N̂ ⊥⊥ X, ˆ̃N ⊥⊥� Y infer “X is causing Y ”,

if N̂ ⊥⊥� X, ˆ̃N ⊥⊥ Y infer “Y is causing X”,
if N̂ ⊥⊥� X, ˆ̃N ⊥⊥� Y infer “I do not know (bad model
fit)” and

if N̂ ⊥⊥ X, ˆ̃N ⊥⊥ Y infer “I do not know (both
directions possible)”.

We have shown before that the last condition will al-
most never occur. The procedure requires discrete
methods for regression and independence testing and
we now discuss our choices.

4.1 Regression Method

Given a finite number of iid samples of the joint dis-
tribution P(X,Y ) we denote the sample distribution by
P̂(X,Y ). In continuous regression we usually minimize
a sum consisting of a loss function (like an `2-error)
and a regularization term that prevents us from over-
fitting.

Regularization of the regression function is at least in
principle not necessary in the discrete case. Since we
may observe many different values of Y for one specific
X value there is no risk in overfitting.

Minimizing a loss function like an `p error is not ap-
propriate for our purpose, either: after regression we
evaluate the proposed function by checking the inde-
pendence of the residuals. Thus we should choose the
function that makes the residuals as independent as
possible (see Mooij et al. (2009) for the continuous
case). Therefore we consider a dependence measure
(DM) between residuals and regressor as loss function,
which we denote by DM(N̂ ,X).

Since we require n(0) ≥ n(k) for all k 6= 0, it is with
high probability sufficient to regard only the values
between minY and maxY as possible values for f .
If there are too few samples with X = xj and the
value f(xj) is not included in Y := {minY,minY +
1, . . . ,maxY } we may not find the true function f ,

but the few “wrong” residuals do not have an impact
on the independence.
The search space, however, is still very large. In prin-
ciple we have to try all of those functions and compare
the corresponding values of the loss function. This is
not tractable, of course: If there are 20 observed X
values and #Y = maxY −minY + 1 = 16, there are
1620 = 280 possible functions. We propose the follow-
ing efficient procedure:

Start with an initial function f (0) that maps every
value x to the y which occurred (together with this
x) most often under all y. Iteratively we then update
each function value separately. Keeping all other func-
tion values f(x̃) with x̃ 6= x fixed we choose f(x) to
be the value that results in the “most independent”
residuals. This is done for all x and repeated until
convergence as shown in Algorithm 1. Recall that we
required n(0) ≥ n(k) for all k.

Algorithm 1 Discrete Regression with Dependence
Minimization
1: Input: P̂(X,Y )
2: Output: f

3: f (0)(xi) := argmax yP̂(X = xi, Y = y)

4: repeat
5: j = j + 1
6: for i in a random ordering do
7: f (j)(xi) := argmin yDM

(
X,Y − f (j−1)

xi 7→y (X)
)

8: end for
9: until residuals N̂ := Y − f (j)(X) are independent

of X or f (j) does not change anymore.

Here, f (j−1)
xi 7→y denotes the current version of f (j−1) but

f(xi) changed to be y. If the argmax in the initial-
ization step is not unique we take the largest possible
y. If the argmin in the iteration step is not unique we
take the y value that is closest to the old f (j−1)(xi).
The iteration can even be accelerated if we consider the
five y values that give the largest P̂(X = xi, Y = y)
instead of all possible values {minY, . . . ,maxY }.

Note that the regression method performs coordinate
descent in a discrete space and DM

(
X,Y −f (j)(X)

)
is

monotonically decreasing (and bounded from below).
Since f (j) is changed only if the dependence measure
can be strictly decreased and furthermore the search
space is finite, the algorithm is known to converge to-
wards a local optimum. Although it is not obvious why
f (j) should converge towards the global minimum, the
experimental results will show that the method works
very reliably in practice.

The code for the proposed method is available at the
author’s homepage.
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4.2 Independence Test and Dependence
Measure

Assume we are given joint iid samples (Wi, Zi) of
the discrete variables W and Z and we want to test
whether W and Z are independent. In our implemen-
tation we use Person’s χ2 test (e.g. Lehmann & Ro-
mano (2005)), which is most commonly used. It com-
putes the difference between observed frequencies and
expected frequencies in the contingency table. The
test statistic is known to converge towards a χ2 dis-
tribution, which is taken as an approximation even in
the finite sample case. For very few samples, however,
this approximation and therefore the test will usually
fail. It has been suggested (e.g. RProject (2009)) that
instead of a χ2 test, Fisher’s exact test (Lehmann &
Romano, 2005) could be used if not more than 80%
of the expected counts are larger than 5 (“Cochran’s
condition”). For a dependence measure DM we sim-
ply use the 1 minus the p-value of the independence
test or the test statistic if the p-value is too small (in
a computer system the p-value is sometimes regarded
to be zero).

5 Experiments

5.1 Simulated Data.

We first investigate the performance of our method on
synthetic data sets. Therefore we simulate data from
ANMs and check whether the method is able to redis-
cover the true model. We showed in section 3 that only
very few examples allow a reversible ANM. Data set
1 supports this theoretical result. We simulate a large
amount of data from many randomly chosen models.
All models that allow an ANM in both directions sat-
isfy the conditions of Theorem 1 (without exception).
Data set 2 shows how well our method performs for
models that are close to non-identifiable and data set
3 investigates empirically the run-time performance of
our regression method and compares it with a brute-
force search.

Data set 1 (identifiability).
With equal probability we sample from a model with
(1) suppX ⊂ {1, . . . , 4}, (2) suppX ⊂ {1, . . . , 6}, (3)
X binomial with (n, p), (4) X geometric with param-
eter p, (5) X hypergeometric with (M,K,N), (6) X
negative binomial with (n, p) or (7) X Poisson with
parameter λ. The parameters of these distributions,
the noise distribution (with values between −5 and 5)
and the function (with values between −7 and 7) are
also randomly chosen. We then consider 1000 different
models. For each model we sample 1000 data points
and apply our algorithm with α = 0.05.

The results given in Table 1 show that the methods
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Figure 4: Data set 2. Proportion of correct and false
results of the algorithm depending on the distribution
of N . The model is not identifiable for r = 0. If
r differs significantly from 0 almost all decisions are
correct.

works well on almost all simulated data sets. The al-
gorithm outputs “bad fit in both directions” in roughly
5% of all cases, which corresponds to the chosen test
level. The model is non-identifiable only in very few
cases, all of which are instances of the counter exam-
ples from above. This experiment further supports our
proposition that the model is identifiable in the generic
case.

Data set 2 (close to non-identifiable).
For this data set we sample from the model Y =
f(X) +N with

n(−2) = 0.2, n(0) = 0.5, n(2) = 0.3 and
f(−3) = f(1) = 1, f(−1) = f(3) = 2.

Depending on parameter r we sample X from

pX(−3) = 0.1 + r/2, pX(−1) = 0.3− r/2,
pX(1) = 0.15− r/2, pX(3) = 0.45 + r/2.

For each value of the parameter r ranging between
−0.2 ≤ r ≤ 0.2 we use 100 different samples, each of
which has the size 400.

In Theorem 1 we proved that the ANM is reversible
if and only if r = 0. Figure 4 shows that the algo-
rithm identifies the correct direction for r 6= 0. Again,
the test level of α = 5% introduces indecisiveness of
roughly the same size, which can be seen for |r| ≥ 0.15.
The number of such cases can be reduced by decreas-
ing α, but would lead to some more wrongly accepted
backward models, too.

Data set 3 (fast regression).
The space of all functions from the domain of X to the
domain of Y is growing very quickly in their sizes: If
#suppX = m and #Y = #{minY, . . . ,maxY } = m̃
then the proposed search space {f : suppX → Y}
has m̃m elements. It is clear that it is infeasible to
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# samples correct dir. wrong dir. “both dir. poss.” “bad fit in both dir.”
total 89.9% 0% 5.3% 4.8%

non-overlapping noise - - 3.0% -
f constant - - 2.3% -

Table 1: Data Set 1. The algorithm identifies the true causal direction in almost all cases. All models that were
classified as reversible are either instances, where the noise does not “overlap” (i.e. f(x) + suppN are disjoint)
or where f is constant. For the remaining models the algorithm mistakes the residuals as being dependent in
4.8% of the cases, which corresponds to the test level.

optimize the regression criterion by trying every sin-
gle function. As mentioned before one can argue that
with high probability it is enough to only check the
functions that correspond to an empirical mass that is
greater than 0 (again assuming n(0) > 0): E.g. it is
likely that P̂(X = −2, Y = f(−2)) > 0. We call these
functions “empirically supported”. But even this ap-
proach is often infeasible. In this experiment we com-
pare the number of possible functions (with values be-
tween minY and maxY ), the number of empirically
supported functions and the number of functions the
algorithm we proposed in section 4.1 checks in order
to find the true function (which it always did).

We simulated from the model Y = round(0.5 ·X2)+N
for two different noise distributions:

n1(−2) = n1(2) = 0.05,
n1(−1) = n1(0) = n1(1) = 0.3

and

n2(−3) = n2(3) = 0.05,
n2(−2) = n2(−1) = ... = n2(2) = 0.18

Each time we simulated a uniformly distributed
X with i values between − i−1

2 and i−1
2 for i =

3, 5, 7, . . . , 19. For each noise/regressor distribution we
simulated 100 data sets.

For N1 and i = 9, for example, there are (11 −
(−2))9 ≈ 1.1 · 1010 possible functions in total and
59 ≈ 2.0 · 106 functions with positive empirical sup-
port. Our method only checked 104 ± 33 functions
before termination. The full results are shown in Fig-
ure 5.

5.2 Real Data.

Cyclic Constraints
Note that the assumption of an ANM is unrealistic for
many real world data sets: If Y can take only 2 val-
ues, for example, there is only little chance of fitting
an ANM from X to Y . It is possible to extend the
ANM to random variables that take values in a cyclic
domain: Y = f(X)+N then means Y and N take val-
ues in Z/mZ and the + should be interpreted as + with
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Figure 5: Data set 3. The size of the whole func-
tion space, the number of all functions with empirical
support and the number of functions checked by our
algorithm is shown for N1 (left) and N2 (right). An
extensive search would be intractable in these cases.
The algorithm we propose is very efficient and still
finds the correct function for all data sets.

modm. This way we can model not only cyclic vari-
ables, but also variables that take categorical values
(i.e. values in a structureless set): Therefore impose
any cyclic structure on the values and use the additive
noise P(N = 0) = p,P(N = l) = (1 − p)/(m − 1) for
l 6= 0.

To fit an ANM it does not make a difference if we as-
sume the regressor X to be cyclic or not. Thus we
only have to say whether we model the target vari-
able as being cyclic (cyclic constraint) or not (integer
constraint). Corresponding identifiable results (as in
section 3) still hold. More details (including proofs)
regarding cyclic constraints can be found in (Peters
et al., 2009b). This model extension leads to more
predictive power and thus to a better performance on
real world data sets. To the best of our knowledge
this is the first method that can take cyclic random
variables into account.

Data set 4 (abalone).
We applied our method to the abalone data set (Nash
et al., 1994) from the UCI Machine Learning Reposi-
tory (Asuncion & Newman, 2007). We tested the sex
X of the abalone (male (1), female (2) or infant (0))
against length Y1, diameter Y2 and height Y3 (all con-
sidered in mm) and have 70, 57 and 28 different val-
ues, respectively. Compared to the number of samples
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Figure 6: Data Set 5. The plots show p-values of for-
ward and backward direction depending on the num-
ber of samples we included (no point means p = 0).
The p-forward decrease much more slowly than p-
backward.

(1000) we treat this data as being discrete. Because we
do not have information about the underlying contin-
uous length we have to assume that the data structure
has not been destroyed by the user-specific discretiza-
tion. We regard X → Y1, X → Y2 and X → Y3 as
being the ground truth.

Clearly, the Y variables do not have a cyclic structure.
For the sex variable X we try both cyclic and non-
cyclic constraints. Our method is able to identify all
3 directions correctly (see Table 2). We used α = 5%
and the first 1000 samples of the data set.

Data set 5 (temperature).
As Sun et al. (2006) we also applied our method to a
data set consisting of 9162 daily values of temperature
measured in Furtwangen (Germany) (Janzing, 2009)
using the variables temperature (T , in ◦C) and month
(M). Clearly M inherits a cyclic structure, whereas T
does not. Since the position of the earth relatively to
the sun is causing the temperature, we take M → T as
the ground truth. Here, we aggregate states and use
months instead of days. This is done in order to meet
Cochran’s condition and get reliable results from the
independence test (if we do not aggregate the method
returns pdays→T = 0.9327 and pT→days = 1.0000).

For 1000 data points both directions are rejected
(p-valueM→T = 2·10−4, p-valueT→M = 1·10−13). But
Figure 6 shows that the p-valuesM→T are decreasing
much more slowly than p-valuesT→M . Using other
criteria than simple p-values we still may prefer the
correct direction.

For both data sets the method proposed by (Janzing
et al., 2009b) does not propose a causal direction be-
cause the difference in likelihoods is considered to be
insignificant.

6 Conclusions and Future Work

We proposed a method that is able to infer the cause-
effect relationship between two discrete random vari-
ables. We showed that for generic choices the direction
of a discrete ANM is identifiable in the population case
and we developed an efficient algorithm that is able to
infer the causal direction for a finite amount of data.

Our method can be generalized in different directions:
(1) Handling more than two variables is straightfor-
ward from a practical point of view, although one may
have to introduce regularization to make the regression
computationally feasible. (2) It should further be in-
vestigated how our procedure can be applied (without
discretization) to the case, where one variable is dis-
crete and the other continuous. Corresponding identi-
fiability results remain to be shown. (3) Since discrete
data often originates from continuous data that have
been measured and rounded, it may be useful to in-
clude models of the form Y = g(f(X) + N) with g
a thresholding function into the method. (4) For the
continuous case Janzing et al. (2009a) try to identify
the existence of a hidden common cause. A corre-
sponding method for the discrete case could be used
in order to distinguish between X → Y and U → X,
U → Y with unobserved U .

In future work ANMs should be tested on a large num-
ber of real world data sets with known ground truth
in order to support (or disprove) ANMs as a principle
in causal inference. We further hope that more gen-
eral principles for identifying causal relationships will
be developed that cover ANMs as a special case. Nev-
ertheless we regard our work as a small step towards
understanding the difference between cause and effect.
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